博客
关于我
tensorflow的variable scope和name scope
阅读量:271 次
发布时间:2019-03-01

本文共 1280 字,大约阅读时间需要 4 分钟。

在tensorflow中有着独特的变量共享机制,不需要传递reference就可以在不同的代码块中共享变量。而这种变量共享机制就是通过variable_scope和name_scope来实现的。

tf.get_variable

这个函数的作用是创建一个新的变量或者在已经创建的变量中检索一个变量。这个函数和tf.Variable有很大区别,后一个每次都会创建一个新的变量(而且如果创建时传入的名字已经存在,会在tensor的name中默认增加后缀进行区分)
在这里插入图片描述

两种scope在创建op和使用tf.Variable创建变量时有着相同的影响(都会在name前加上scope的前缀),但是当使用tf.get_variable时,name_scope将会被忽略。

import tensorflow as tfwith tf.name_scope('test_scope'):    test1=tf.get_variable('test1',[1],dtype=tf.float32)    test2=tf.Variable(1,name='test2',dtype=tf.float32)    a=tf.add(test1,test2)print(test1.name)  #test1:0print(test2.name)  #test_scope/test2:0print(a.name)      #test_scope/Add:0

如果想要一个tf.get_variable创建的变量可以被其他代码块访问,需要使用variable scope:

import tensorflow as tfwith tf.variable_scope('test_scope'):    test1=tf.get_variable('test1',[1],dtype=tf.float32)    test2=tf.Variable(1,name='test2',dtype=tf.float32)    a=tf.add(test1,test2)print(test1.name)  #test_scope/test1:0print(test2.name)  #test_scope/test2:0print(a.name)      #test_scope/Add:0
import tensorflow as tfwith tf.variable_scope('share'):    share=tf.get_variable('share_variable',[1])with tf.variable_scope('share',reuse=True):    share_test=tf.get_variable('share_variable',[1])    print(share.name)        #share/share_variable:0print(share_test.name)   #share/share_variable:0

转载地址:http://vrvx.baihongyu.com/

你可能感兴趣的文章
MQ 重复消费如何解决?
查看>>
mqtt broker服务端
查看>>
MQTT 保留消息
查看>>
MQTT 持久会话与 Clean Session 详解
查看>>
MQTT介绍及与其他协议的比较
查看>>
MQTT工作笔记0007---剩余长度
查看>>
MQTT工作笔记0008---服务质量
查看>>
MQTT工作笔记0009---订阅主题和订阅确认
查看>>
Mqtt搭建代理服务器进行通信-浅析
查看>>
MS COCO数据集介绍
查看>>
MS Edge浏览器“STATUS_INVALID_IMAGE_HASH“兼容性问题
查看>>
ms sql server 2008 sp2更新异常
查看>>
MS SQL查询库、表、列数据结构信息汇总
查看>>
MS UC 2013-0-Prepare Tool
查看>>
MSBuild 教程(2)
查看>>
msbuild发布web应用程序
查看>>
MSB与LSB
查看>>
MSCRM调用外部JS文件
查看>>
MSCRM调用外部JS文件
查看>>
MSEdgeDriver (Chromium) 不适用于版本 >= 79.0.313 (Canary)
查看>>